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Abstract. We analyse the scaling limit of discretised random paths with curvature-dependent 
action. For finite values of the curvature coupling constant the theory belongs to the 
universality class of simple random walks. It is possible to define a non-trivial scaling 
limit if the curvature coupling tends to infinity. We compute exactly the two-point function 
in this limit and discuss the relevance of our results for random surfaces and string theories. 

1. Introduction 

The theory of random walks is important in many branches of physics. In this paper 
we study a new class of random walks, where the action, or the transition function, 
depends on the curvature. The theory of random walks with curvature-dependent 
action has a long history in polymer physics [ 1,2] and we have used the term ‘new’ 
above because we are interested in a particular scaling limit of the theory which turns 
out to be different from the scaling limit of the ordinary random walk. 

An important motivation for studying the theory of random walks with curvature- 
dependent action stems from string theory. String theory is most naturally formulated 
as a first quantised theory, i.e. a theory of random surfaces, and, as emphasised by 
Polyakov [3], extrinsic curvature is likely to play an important role. The same con- 
clusions were reached during the study of discretised random surface models which 
could serve as rigorous regularisations of string theories [4-61. The major problem in 
these regularised random surface models was the non-vanishing of the string tension 
at the critical point [4,7]. In order to obtain a random surface theory with mass and 
string tension vanishing at the same critical point it seems that one must have at least 
two independent coupling constants that can be tuned simultaneously and there are 
strong arguments in favour of an extrinsic curvature coupling as one of them [4,6] 
(see also [8]). It should also be mentioned that an extrinsic curvature term arises in 
the action of stiff membranes [9]. 

Contrary to the theory of random surfaces with curvature-dependent action, the 
corresponding theory of random paths can be completely solved, as we will show 
below. It is noteworthy that the qualitative aspects of the theory are exactly what one 
hopes for in the theory of random surfaces. 

We now give a quick overview of our results. Let x(s) be a smooth path in Rd.  
The curvature of x at s is given by 

[ X ’ X 2 - ( 1 .  X ) 2 ] 1 / 2  

x2 
k =  
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where the dot denotes differentiation with respect to the parameter s. The curvature- 
dependent action of paths in the continuum is given by 

where a, and a2 are positive real numbers. The functional integral corresponding to 
S has been studied directly in the continuum by saddle point methods for large d 
[lo, 111. A related problem is considered in [12]. 

We shall study the two most natural discretised versions of (1.2), i.e. random walks 
in a hypercubic lattice and piecewise straight paths (random flight model). Our results 
are of two kinds. 

(i)  Finite values of the bare coupling constant A (i.e. the value of A used in the 
discretised models) do not change the statistical behaviour of the paths. For finite 
bare A we have the same critical behaviour as for ordinary simple random walks, i.e. 
the continuum theory defined at the critical point ( p C ,  Ac),  Ac<w, is identical to the 
one corresponding to (1.2) with A = 0. 

(ii) When the bare coupling A tends to infinity, the critical behaviour of paths 
changes qualitatively. Tangent vectors to paths develop long-range correlations and 
the two-point function has an anomalous dimension 7 = 1. 

For the lattice model we compute in this case the scaling limit of the two-point 
function in a closed form in § 2. This two-point function only has the symmetry of 
the hypercubic lattice, so special care has to be taken in order to get a rotationally 
invariant theory. 

The random flight model is considered in § 3. It is manifestly Euclidean invariant. 
For this model the long-range correlation of tangents is (in the scaling limit) described 
by diffusion on the unit sphere. In the lattice case the correlations of tangents can be 
described by diffusion in a finite set, i.e. the intersection of the unit sphere in Rd with 
the coordinate axes. This is the reason for the special attention which one has to pay 
to rotational invariance in the lattice case. 

In 8 3 we also compare our results with a class of random walks for which the 
curvature-dependent term in the action is not scale invariant. The continuum limit of 
these walks can be constructed and they all have anomalous dimension 7 = 1. One of 
these limits is the Ornstein-Uhlenbeck velocity process. 

For the discretised random walk models we study here, the steps are not independent 
random variables. In the appendix we show that the generalisation of the central limit 
theorem to the case of uniformly mixing random variables can be applied to prove 
that for any fixed finite A the endpoint distribution for the walks is asymptotically 
Gaussian. 

Finally, in the conclusion, we compare the different scaling limits that we construct 
and discuss the relevance of our results for random surfaces and string theories. 

2. Random walk in Zd 

In this section we consider random walks in the lattice Ed. When the action of the 
walks is taken to be the natural lattice version of (1.2), we compute the Fourier 
transform of the scaling limit of the two-point function in a closed form and discuss 
its properties. 



Statistical mechanics of paths 983 

Let e , ,  . . . , ed be the standard orthonormal basis for Zd.  Define the unit vectors 
f l m  by = (-l)ael, where a =0, 1. A random walk w in Z d  of length 1 0 1  = n is a 
sequence of n + 1 points xo, xl, . . . , x, E E d  such that fo r j  = 0, . . . , n - 1, x,+, - x, equals 
one of the unit vectors f P .  

We define an energy functional, A(w), for all random walks of finite length by the 
formula 

n 

A(w) = a(xj - x ~ - ~ ,  x,-~ -xj-2) 
j = 2  

where a( ., a )  is a positive function which gives the action of individual steps in the 
walk. For an isotropic walk, a(x, y )  is only a function of the inner product x y. This 
is the case we shall be concerned with even though the general case might not be 
devoid of interest and our formalism can be applied to it. 

Our goal is to analyse the statistical mechanics of random walks with Boltzmann 
factors exp(-A(w)). The lattice discretisation of (1.2) gives 

if x * y = l  

@ + & A  if x .y=O.  
a(x,y)= p+2A if x . y = - l  (2.2) 

(2.3) 

1” 
This is the case studied in [13]. It is convenient to introduce the notation 

exP[-a(fP,fP)l= t;” 

where 
if i=j, cy = p  

ta’P if i = j , a # P  
if i#j. 

1J [:: 
f 3  

The two-point function, G(x, y), is defined by 

G(x, Y )  = c exp(-A(w)) 
w x - >  

(2.4) 

(2.5) 

where the sum is over all walks w from x to y. I t  is clear that G ( x , y )  only depends 
on x - y  so we shall use the notation G(x, y )  = G(x - y ) .  The susceptibility ,y is defined 

X f P )  = c a x )  (2.6) 
by 

X 

and equals t(1- ()-I, where 

[ =  tl+r2+2(d - l ) t 3 .  (2.7) 

The function G(x) is divergent for [> 1 but finite for 6 s  1. When we choose 
coupling constants on which 6 depends via the t , ,  we refer to the surface [ =  1 in the 
coupling constant space as the critical surface. 

We introduce the normalised expectation for random walk observables b y  

The correlation function of tangents to the walks is easily calculated [ 131: 

g(n)E((xl-xo) (Xn-xn-1)) 

= exp( -mn) (2.9) 
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where 

m = -In( 7). [ I  - 22 (2.10) 

There are two mass scales in the theory, namely m, given by (2.10), and p, the mass 
appearing in the exponential decay of G(x)  as x goes to infinity along a coordinate 
axis. Roughly speaking, w is a measure of how long the typical walks are and m of 
how straight they are. The mass p vanishes at any point on the critical surface, whereas 
m vanishes when t2 = t ,  = 0. Thus, the scaling limit of the tangent-tangent correlation 
function can only exist at f2  = t3 = 0. 

For the computation of G(x)  we need to introduce some auxiliary quantities. Let 
us define 

We have the recursion relation 

y = l  k = l  

Fourier transforming (2.12) we 

where 

(2.1 1 )  

(2.12) 

(2.13) 

(2.14) 

It is convenient to define a 2d x 2d matrix M ( q )  by 

M(q)Gp = tGP exp(-iq .fy). (2.15) 
Similarly, we define the matrices G n ( x ) ,  G(x), G n ( q ) ,  6(q) by 

G,,(x)$’= G?’(x) (2.16) 

G(x)=c;=p=I G n ( x )  (2.17) 

(2.18) u p  - -iajjp 
Gn(q) i j  -Gn ( 4 )  

(2.19) 

Equation (2.13) implies that 

G n + I ( q )  = M(4InG1(q)  (2.20) 

G(q)  = (n -wq) ) - ’Gl (9 ) .  (2.21) 

and hence 

The existence of (1 -M(q))- ’  follows from the convergence of the sum (2.19) for any 
q E Rd, provided 6 < 1. We therefore have 

(2.22) 
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which leads to a formula for the two-point function, since 

G ( x ) =  1 S(x);’. 
1.1. a. P 

Note that 

G YJP ( X I  = &,Sap6xf: 

so 

(2.23) 

(2.24) 

d Y J P ( q )  = 6,tia, exp(-iq . f ~ ) .  (2.25) 

From (2.22)-(2.25) one can derive a closed formula for G(x) .  We prefer to bypass 
this formula in deriving the salient features of G ( x )  and instead write down explicit 
expressions for the scaling limits of G(x) .  

In order to calculate p, the mass governing the exponential decay of G ( x ) ,  it 
suffices to find the pole of the matrix elements of 6 ( q )  which is closest to the real qk 
axis, when qJ = 0 fo r j  # k. These poles are located exactly where the inverse of 1 - M ( q )  
does not exist, i.e. where det(U - M ( q ) )  = 0. 

The matrix M ( q )  has a simple block structure, so this determinant is easily calculated 
and equals 

(2.26) 

where 

h ( q , )  = 1 + ( t ,  - t3)2+ ( 2 2 -  t 3 ) ’ - 2 (  t l  - t 3 )  COS 4,. (2.27) 

For O <  1 - [<< 1 and t ,  # 1 one can calculate from (2.26) and (2.27) that the determinant 
is zero for 

1 - 8  
[ t 3 (  1 + s ) ] ’ ’ ~  qr = *i (l-()l’2+o(l-[) 

qJ = O  j # k  
(2.28) 

where 6 = t ,  - r 3  # 1 and we have for simplicity put t 2  = t , .  If we define the critical 
exponent of p, denoted by v, by the formula 

p --(I - 0” (2.29) 

as 5 1, we conclude from (2.28) that v = $ except at the point t ,  = 1, t2  = f3 = 0, where 
a more detailed analysis is required. It is easy to extend the argument above to show 
that, for [< 1, the power corrections to the exponential decay of G ( x )  are of Ornstein- 
Zernike type. 

We now turn our attention to the scaling limit. A scaling limit of G ( x )  can be 
constructed at any point on the critical surface. For the sake of simplicity we take 
f Z =  t3 as above and write 

t l  = exp( -P ) 

t2 = exp(-p - A ) .  
(2.30) 

The region in the ( p ,  A )  plane, where [< 1, has the shape indicated in figure 1. We 
choose a path, 6 -, ( A  ( e ) ,  p( e ) ) ,  in the coupling constant space such that 

( P  ( e 1, A ( 0)) -, P* > 0 
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c 

P 
Figure 1. The critical curve A = A,(p) in the ( p ,  A )  coupling constant plane. The curve 
starts at the critical point ( p ,  A )  = ( p , , O )  corresponding to the ordinary random walk. 

as 0 + CO. Given y E Rd we let 0 tend to infinity along a discrete sequence such that 
t9yEZd.  The scaling limit of G(x)  is defined by 

G * ( Y )  = lim e d - * + w ( e y )  (2.31) 
e-= 

if the limit exists. The exponent 77 in (2.31) is the anomalous dimension of the two-point 
function. 

Approaching the critical surface at some point different from t l  = 1, one can check, 
by a similar computation as the one that led to (2.28), that det(U-M(qj) tends to 0 as 
1 - .$ at q = 0. By a short computation we then find 

(2.32) 

as 8 +CO, where M* is a calculable constant matrix. It follows now from (2.22), (2.23) 
and (2.31) that 

e-*( u - M( e - Iq ) )  - I  -, ( q2 + p i )  -'MI* 

G*(x)  = constant(-A+p:)-'(O, x) (2.33) 

where A is the Laplacian on Rd, i.e. the scaling limit is the usual Brownian motion. 
We now turn our attention to the more interesting scaling limit at t ,  = 1, tz = f 3  = 0, 

i.e. p = 0 and A = CO. We require the scaling limits of the masses m and p both to exist 
and be finite, i.e. 

lim e - ' p ( p ( e ) ,  A ( @ j ) = p * > O  

lim e- 'm(P(e) ,A(e) )=m,>O.  

e-m 

e-cc; 

It follows from (2.10) that 

2d exp( - A (  e)) = m,. 0 

and from (2.28) one can see that we must let 

1 -exp(-p(0)) = be-' 

(2.34) 

(2.35) 

(2.36) 
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for some positive constant b. Now we are prepared to let 8 + 00. We obtain 

lim @(U - M( q8-I) )  = A( q)  
8 - m  

- m  b-iq, 

b+iq,  - m  . . I  

- m  b+iq2 

- m  . . .  

(2.37) 

where we use the notation m = m*/2d.  It is straightforward to compute the inverse 
of A and from (2.20),  (2.21) and (2.31) we obtain 

(2.38) 

where 

M = b + m .  

The above calculation is easily generalised to the case f2  # r 3 ,  but that case has no new 
features. 

We have now demonstrated explicitly that I) = 1. If we exhibit the dependence of 
the two-point function on the renormalised ‘masses’ M and m by writing 6*(q; M ,  m) 
and G*(x; M , m )  instead of 6*(q) and G*(x), then G*(Bx; M ,  m ) =  
8 - d + ’ G * ( x ;  OM, e m ) .  This is another manifestation of the anomalous dimension I) = 1 .  
In [ 1 3 ]  we used Fisher’s scaling relation to prove this fact, so now we have proven 
Fisher’s scaling relation for the random walk model at A = CO, p = 0. 

The formula (2.38) has several noteworthy features. First of all, it is nor rotationally 
invariant and only has the symmetry of the original lattice. This is not surprising 
because we are taking the scaling limit with the requirement that the correlation length 
of tangents to the walk is finite and thus the continuum walks remember the lattice 
structure since the tangents can only point in coordinate directions. The only place 
on the critical surface where this can happen is ( p ,  A )  = (0, CO) because at other points 
the correlation length of tangents is zero. 

From the condition 6 < 1 it follows that b > (2d  - l ) m ,  i.e. 

M > 2dm = m,. (2.39) 

Hence 

(2.40) 

for all q E Rd. The mass p* is given by the zeros of the function f ( 2 )  = D((  z, 0, , . , , 0)) 
closest to the real axis, so 

I** = ( M M - 2 d m  - 2 ( d  - l ) m  (2.41) 

The mass that governs the exponential decay of G*(x)  in directions different from 
those of the coordinate axes is larger than p*, as can be seen from the structure of 
the zero set of D(q) .  However, with a suitable anisotropic rescaling of x space, one 
could obtain the same exponential decay in all directions and then G(x) would be 
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approximately rotationally invariant at large distances. This corresponds simply to a 
choice of a norm, different from the Euclidean one, to define distances in x space. 

Of course, one can construct a rotationally invariant two-point function by averaging 
over the rotation group. In two dimensions it is easy to carry out the computation 
and one obtains 

‘M2+1 2 
- 2 4q 

4 2 112’ - 
{q6(1 -2m/M)+q4[Mp*+4(M-2m)2]+8q2M2p,(M-2m)+4M p * )  

(2.42) 

In the massless case, p* = 0, this takes the simple form 

(2.43) 

In the next section and the conclusion we compare the above result with the rotationally 
invariant two-point function constructed in the next section by Euclidean invariant 
regularisation. 

3. Piecewise linear random walks 

In this section we consider a Euclidean invariant random walk with curvature-depen- 
dent action. It is defined by the unnormalised transition amplitude 

&r1, r2)=exP[-~h(lrzl)-~f(~(r,, r2))l (3.1) 

where 6 (  r , ,  r2) is the angle between the two subsequent steps r ,  and r2 in Rd, h is an 
arbitrary non-negative function on the positive real line with suitable growth properties 
and f is a non-negative continuous function on [0, T] such that f ( 0 )  = 0 and f( 0) # 0 
if 6 # 0. 

Thus, the two-point function is given by 

Gp,*(O,x)= (3.2) 

where Po is the distribution of the first step, which may be chosen arbitrarily (however, 
see the appendix). 

For A = 0 the central limit theorem for sums of independent random variables 
implies that the continuum limit of Gp,o is the free propagator, corresponding to 
Brownian motion. For any fixed A > 0 we prove in the appendix that the same 
conclusion holds by exploiting a central limit theorem for weakly dependent random 
variables. 

Noticing the scale invariance of the second term in the exponent in (3.1), it follows 
that the normalised transition probability P ( r , ,  r2) in (3 .1)  can be rewritten in the 
factorised form 

d r , .  . .dr,,-, Po(r l )&rl ,  r2). . . ~ ( r n - , , x - r 1 - r 2 - . .  . - r n - l )  
n = l  7 
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where 

(3.4) 

(3.5) 

i=  r/lrl and d R ( i )  is the uniform measure on S d - '  such that ddr = Irld-l dirt dR( i ) .  
Thus, expectation values of functions depending only on the normalised step vectors 

i, with respect to the measure defined by P are equal to the expectation values (to be 
denoted by ( . ) A )  with respect to the measure defined by the transition probabilities 

(3.6) 

if Po is chosen to depend on lrll only, i.e. Po is rotationally invariant, which we shall 
assume in the following. 

In particular, the tangent-tangent correlation between the directions of the first 
and the nth step is given by 

(;I * ;,,)A = ?I tnKA(?i ,  i 2 ) .  . . KA(Fn-lI?,,) dR(? , ) .  . . dR(f,,). (3.7) I 
More generally, expectation values of functions of the form f,(tl) . . .fn(?,,) are 

given by 

( f i (? i )  . . . f n ( ; n ) ) h  = 1 f i ( ? i )  . . . f n ( i n ) K h ( i l ,  . . . K(?,,-I, ?,,) dWr , )  . . . dR(r,) 

(3 .8)  

which yields an interpretation of the model, as far as these expectation values are 
concerned, as a one-dimensional classical spin chain with transfer matrix K , .  

The kernel & ( . , a )  defines a bounded operator K A  on the Hilbert space %= 
L z ( S d - I )  of square-integrable functions on Sd-'  (with respect to dR)  by 

(KAP)(?l)=[ K A ( f I >  ?Z)(P(?2) dfi(i2)* (3.9) 

The operator KA has norm 1. 1 is a non-degenerate eigenvalue with eigenfunction 1 
and -1 is not an eigenvalue (see the appendix). For a E Rd\{O} the function 

(3.10) Pa(  ?) = a . i 
is an eigenfunction of K,,, since 

(KAPa)(i )-- exp[-Af( 6( ?, , ? z ) ) ] a .  fZ dR( 4) (3.11) 

considered as a function of a and i is invariant under simultaneous rotations of a and 
il (since dR is rotation invariant) and is linear in a. Denoting the eigenvalue of cp. by 
a ( A ) ,  we obtain from (3.7) 

(il * ?,,)=a(A)" nGN (3.12) 

and la(A)l< 1 for 0 6  A <a, according to the remarks above. Thus the correlation 
length 5 ( A )  = (-logla(A)\)-' only diverges if la(A)l+ 1. We shall now show that 

-" 
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a ( A )  + 1, if A +CO, and that the corresponding scaling limit of the expectation values 
(3.8) is given by Brownian motion on the sphere S d - ' .  

We start by proving that there exists a function A ( n ) ,  n E N, such that 

lim KY(,)cp = exp(-tL)cp V c p € X , t 2 0  (3.13) 
n-a j  

where L is the Laplace-Beltrami operator on the sphere S d - ' .  
Since KA is a rotationally invariant operator, i.e. K ,  (Of, ,  Of2) = KA ( f ,  , F2) for any 

orthogonal transformation 0 : Rd + Rd, it follows that K A  commutes with the orthogonal 
group acting on X by f + f 0 0. Hence KA has the same eigenfunctions as L with the 
same multiplicity of eigenvalues. To be more precise, denoting by a,, I = 0, 1,2, . . . , 
the eigenvalues of L in increasing order and by d, the multiplicity of a,, we may choose 
an orthonormal basis of eigenfunctions cpf, I ,  i = 1 , . . . , d,, 1 = 0, 1,2, . . . . These functions 
are also eigenfunctions of KA and the eigenvalues of cpI ,  1 ,  . . . , cp ,, d ,  with respect to K ,  
are equal. We shall denote this eigenvalue by P,(A). 

To prove (3.13) it is enough to prove that we can choose A ( n )  such that 

lim P l ( A ( n ) ) "  =exp(-cq) Vl=0,1,2,  . . .  (3.14) 
n-a: 

since this implies that, for t 3 0, 

for all cp, $E X which are finite linear combinations of the c p I . ,  (here ( .  , . )  denotes the 
inner product in X). Since 11 K A  I/ = l\exp(-L)/( = 1 and the set of finite linear combina- 
tions of pi,, is dense in 2, it follows that (3.15) holds for all cp, 4 E X. From this (3.13) 
follows for all cp E 2, since 

II K I;,,,cp - e v ( -  t ~ ) c p  I / *  = (cp, KZfl  Jcp)  - (Kf;,n)cp, ~ x P ( -  t ~ ) c p  J - ( ~ X P ( -  t ~ ) c p ,  K?(fl Jcp) 

+ (9, exp(-2tL)cp) + 0 as n+w.  

In order to prove (3.14) we fix a North pole on Sd- '  and denote the azimuthal 
angle of FE Sd- '  with respect to n* by e( F), i.e. cos e( F) = n* F. It is well known (see 
[ 141) that it is possible to choose the functions cp I , ,  such that cpf, 1 ,  1 = 0,1,2,  . . . , depends 
only on F through e( :). We suppose in the following that we have made such a choice 
and denote the function cp,,,(F) as a function of 8 by c p , ( B ) .  Inserting F, = n̂  into the 
eigenvalue equation 

(3.16) 

we obtain 

(3.17) 

Furthermore, it is well known that (see, e.g., [14]) 

( L V , ) ( O ) =  - ~ ; ( e ) - ( d - 2 )  cot ecp;(e)l,=,= - (d- i )cp;(e)  (3.18) 

and 

cpj(0) = 0. (3.19) 
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Using the Taylor expansion 

= d o ) +  e * c p ; ( O ) +  e 3 W )  
where l+(e) l=O(l) ,  together with (3 .18)  in (3.17), we obtain 

Next we note that the quantity 

(3.20) 

(3.21) 

tends to zero as A +CO. This follows from the fact that f by assumption is continuous 
and only vanishes at 8=0.  Similarly, it follows that the last term in (3.20) tends to 
zero faster than cA as A +a. Thus, choosing A ( n )  such that 

n c A ( n ) +  as n + m  (3.22) 

we obtain 

lim P l ( A ( n ) ) "  = lim ( 1  - ~ I C , ( , , ) + O ( C ~ ( , ) ) ) "  =exp(-a,)  (3.23) 
n - a ;  n-m 

as desired. 

on sd-' viewed as multiplication operators on X and for t l  , t2, . . . , t k  3 o 
We remark that it follows from (3.13) that for any set f l ,  . . . ,fk of bounded functions 

K'I" A ( n )  f 1 Kr2" A ( n )  f 2 ' '  ' K k ? f l ) f , p +  exp(-tlL)fl 

x exp(-t2L)f2.. . exp(-tkL)fkq as n + a  (3.24) 

Combining this result with (3.8) we obtain the continuum limit of the expectation 
for all cp E X. 

value in (3.8) as 

lim (fl(i1,,,) . f Z ( P ( f l + f 2 ) n )  * . . . . f k ( i ( r , + . . . + r ~ ) n ) ) A o  
n-cc 

= (1, f l  exp(-t2L)f2 . . . * exp(-tkL)fk 1) (3.25) 
where 1 denotes the constant function 1 on S d - ' .  

This is just the Feynman-Kac formula expressing that the continuum limit of the 
spin chain under consideration is represented by Brownian motion on S d - ' .  This fact 
has been established for the one-dimensional Heisenberg model, i.e. for f ( e )  = 1 - cos 8, 
in [15]. The present calculations exhibit the universal character of the result in a 
simple fashion. 

Let us also note that the region in the (P ,  A )  plane, where the two-point function 
G p , A  (0, x)  is finite, looks as indicated in figure 1. Defining the susceptibility x(p,  A )  by 

x(P, A ) =  dx G/3 ,A(o ,  x, (3.26) I 
it follows from (3.2) that 

(3.27) 
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Thus the critical line in figure 1 is determined by the equation 
Ni(P)N,(A) = 1 (3.28) 

and, of course, depends on the functions h and J: 
The results derived above tell us that the continuum limit of Go,,, on the critical 

line, is a free propagator (or Brownian motion in R'), whereas in the limit A + 03 and 
p > 0 fixed we obtain Brownian motion on S d - ' ,  as far as the step correlation functions 
are concerned. 

A simultaneous continuum limit of G,.,(O, x)  and of expectation values of functions 
of the step variables, i.e. of expectations of the form (3.8), can only exist at ( p ,  A )  = 
(0, a). In order to discuss this limit we define the masses p(p ,  A )  and m ( A )  byt 

1 
p(P,  A )  = - lim -log G,,(O, x)  

(XI-.= 1x1 

and 
1 

n-ic n m(A) = - lim - log( r*" . 

as in § 2. Then we require 

(3.29) 

(3.30) 

(3.31) 

which determines A as a function of p. 

limits of G,, and of tangent-tangent correlations in a more direct way. 
Instead of elaborating on (3.31) we shall discuss the relation between the continuum 

Starting with (3.2) we use the fact that the Fourier transform Go,, of G,,* is given 
by 

Go,,(q)= f I d r ,  . . .  d r n P ~ ( r , ) ~ ( r , , r ~ )  . . . ~ (  r,, rn)exp[- iq . ( r l+  . . .+ r n ) ] .  

Defining 

n = l  

(3.32) 

F ( q  * r*) = Fq( r*) = - IoE d1r11r1d-1 exp[-ph(jr/)l exp[-i(q. * I ~ I I  (3.33) 

and taking Po(r)  = N,(P)- '  exp[-ph(r)] (see the appendix), (3.32) can be rewritten as 
NIM) 

lr 

6 , , A ( q ) =  C NI(P)"-'N,(A)" dfi(r*l). *.dfi(;n,)F(q* ~ * I ) K A ( ~ * I ,  r*2) 
n = l  

X F ( q .  ;JK,(?2, r * 3 ) .  . . F ( q .  ;n-l )K,(r*n-l ,  ? n ) F ( q .  f n )  

= f N,(P) " - 'NdA)" (1 ,  Fq(K,Fq)"l) (3.34) 
n = 1  

where F, is considered as a multiplication operator on %'= L 2 ( S d - ' ,  dfi)  and K ,  is 
defined by (3.6) and (3.9). 

The continuum limit of Go,,(q) is defined as 

G ( q )  = lim e-m O'-2Gpce, ,Ace,(O-'q)  (3.35) 

t We assume here that h increases sufficiently rapidly so that the limit (3.29) is positive on the right of the 
critical line. 
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where @ ( e ) ,  A ( @ ) )  are chosen according to (3.31) and 7 is the anomalous scaling 
dimension, chosen such that the limit is finite. 

We now note that 

K:(O)+ exp(-ARL) 

if A ( @ )  is chosen suitably (see (3.13)), and that 

Fq,,(r*)' = F ( @ - ' q .  f) '+exp(F'(O)q. r*) 

since F ( 0 )  = 1. Thus it follows from the Trotter product formulat that 

(KA(O)Fq/O)'+exp(-ARL+F'(O)q* f) 

where the function q r* on S d - *  is regarded as a multiplication operator. 
We now see from (3.35) that, if we set n = Of,  and choose p ( @ )  such that 

[ N l ( P ( e ) ) N 2 ( A  ( @ ) ) l o  jexp(-PR) 

and take 

77'1 

then the sum in (3.34) turns into an integral over t and we get 

G ( q )  = lox d t  exp(-PRt)(l, exp[-(A,L-icq. 

= (1 ,  (ARL-icq r * + P ~ ) - ' l )  

where we have set F' (0 )  = ic (c  E W ) .  

(3.36) 

(3.37) 

(3.38) 

(3.39) 

(3.40) 

(3.41) 

In particular, we see from (3.41) that the continuum limit is independent of the 
function h, as expected, since the constant c can be absorbed into a redefinition of A R  
and P R .  

We emphasise that this expression for the propagator is different from the sym- 
metrised continuum limit of the lattice propagator (2.42) (for any value of PR, h R ) .  
One way to see this is to expand both expressions (2.42) and (3.41) in powers of q 
(for PR f 0). This result is perhaps a little surprising, and is further discussed in the 
conclusion. 

Remark. The construction leading to 6 ( q )  above is applicable in a more general 
setting. Let M be a self-adjoint operator on L 2 ( R d )  such that the kernel Q,(r ,  r')  of 
exp( -tM) is positive, and such that M has a positive ground-state wavefunction R, i.e. 

Q,(r ,  r')Cl(r')  dr '= f l ( r ) .  (3.42) I 

I 

Then 

R, ( r ,  r ' )  =R(r)-'Q,(r,  r ' ) n ( r ' )  (3.43) 

is positive and can be interpreted as a transition probability since 

R,(r ,  r ' )  dr '=  1. (3.44) 

t In order for this formula to be applicable one has to make sure that the convergence in (3.36) is sufficiently 
rapid. We do not elaborate on this point here. 
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We now define a two-point function by 

whose Fourier transform is 

x exp( -iq.  r j ) n ( r n )  dr, . . . dr,. (3.46) 

Here rl is the initial velocity (or the first step). 

formula one finds the continuum propagator 
The continuum limit is defined as in (3.35),  and by applying the Trotter product 

@rl;  q )  = lom ds exp(-pRs)Q(rI)-l exp[-s(A,M+iq. r)](rl ,  r')fl(r') dr' 

= jOm ds  exp(-P,s)n(r,)-'(S,,, exp[-s(ARM+iq r)]fl) 

= Ct(rl)-1(6r,, (A,M + iq .  r + ~ R ) - ' n )  (3.47) 
if p and A are chosen as 

p = 6-'pR A = K I A R .  (3.48) 
As an illustration let us consider the ordinary Ornstein-Uhlenbeck process, for 

which we take 

M = - i A + l r 2 - l  2 2 2d (3.49) 
i.e. M is the Hamiltonian of the harmonic oscillator, and 

Q( r )  = 7 r - d / 4  exp( -41.'). 

Observing that 
(3.50) 

M + iq r = -SA++( r + iq), - i d  +fq2 (3.51) 
and that A is translation invariant we have 

exp[ - t ( M  + iq r ) l ( r l ,  r2) = exp(- its') Q ~ (  rl - iq, r2 - iq). (3.52) 
Qf is given by Mehler's formula: 

(3.53) 
so 

~ , ( r ~ ,  r2) = T-~/'[I - e x p ( - 2 ~ ) ] - ~ / ~  exp{-[l -exp(-2t)]-'[exp(-t)r, - r,]'). (3.54) 
From (3.53) one gets that 
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Using this formula together with (3.52) in (3.47) one finds 

(3.56) 1 
-exp(-2ARs))+-(l-exp(-Ans)q. 

A R  

This result equals the Fourier transform of the standard form of the Ornstein-Uhlenbeck 
propagator [ 161. 

Note, finally, that for all the processes constructed by this procedure, the anomalous 
dimension 77 is equal to 1. 

4. Conclusion 

The universality of the ordinary random walk is ensured by the central limit theorem 
or, phrased differently, the Markovian nature of the random walk. If we consider 
discretised random walks like the ones in $ 9  2 and 3, the curvature-dependent inter- 
actions introduced there couple two neighbouring steps in such a way that the stochastic 
process is not Markovian in the step variables. 

As expected, such short-range interactions do not change the critical behaviour of 
the random walks. For the piecewise linear model considered in 0 3 this follows directly 
from a generalised central limit theorem (see the appendix), which allows us to reach 
the same conclusions as for the ordinary random walk. Only if we take the coupling 
constant of the curvature-dependent term in the action to infinity can we expect to get 
something qualitatively different from the ordinary random walk. 

It is worthwhile rephrasing this in the language of the renormalisation group. It 
can be shown that the coupling constant a(= A - ' )  in front of the curvature-dependent 
term is asymptotically free [ 10, 131. For the regularised theory this implies that a = 0 
( A  = CO) is an ultraviolet stable fixed point. The only other fixed point on the critical 
line in the (p,  A )  coupling constant plane (see figure 1) is the point (Po ,  A = O ) ,  
corresponding to the critical point of the ordinary random walk. This point is infrared 
stable. Therefore, starting at a$nite A c  we will always be taken to this fixed point by 
the renormalisation group and the critical theory for finite A, is identical to one at 
A = 0, as we indeed have verified by an explicit calculation. Only at A = CO have we 
any chance of constructing a scaling limit corresponding to (1.1) with A (continuum) # 0. 

It is important to keep in mind that the continuum theory (defined by (1.1)) contains 
higher-derivative terms. Consequently, it is clear that the two-point function G, being 
the inverse of a third-order differential operator, cannot only be a function of the 
endpoints but must also have some reference to the initial value of the tangent, r , ,  to 
the random walk. 

There should not and does not exist a universal G(x, y )  which is model independent 
(after averaging over initial velocities), a fact which is exemplified by the three cases 
we have considered explicitly: the random walk on the lattice, the piecewise linear 
random walk and the Omstein-Uhlenbeck velocity process. 

In the lattice case, the distribution of tangents was chosen to be uniform among 
the 2d different ones (see (2.23)), since otherwise the propagator does not inherit the 
symmetry of the lattice. In the piecewise linear case considered in Q 3, the distribution 
of rl was given by the product of the uniform distribution on the sphere and the weight 
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function exp[-h(lr))] (see (3.34)). In the Ornstein-Uhlenbeck case we chose the 
ground-state wavefunction of the generator of the process. 

The difference between these three theories can be understood as follows. The first 
two processes have the common property that the length of subsequent steps are 
uncorrelated. This is a direct consequence of the scale invariance of the curvature- 
dependent part of the action. For the Ornstein-Uhlenbeck process and its generalisa- 
tions the steps are correlated both in magnitude and direction. 

The lattice walk can be regarded as a generalised one-dimensional Ising model, 
where the spin vectors can point in ZD different directions. The piecewise linear walks 
can be regarded as a classical one-dimensional spin chain and thus it should not be 
surprising that their scaling limits can be different, since the dynamical variables (i.e. 
the steps) have different symmetries. I t  is noteworthy that averaging over the rotation 
group does not make the lattice propagator equal to the one constructed from piecewise 
linear walks. 

It is a most challenging problem to generalise the results of this paper to random 
surfaces. The first steps in that direction have been taken in [6], where it is shown 
that the phase diagram is similar to figure 1 and the extrinsic curvature coupling is 
asymptotically free. In  the random surface theory the role of the mass of the tangent- 
tangent correlation is played by the string tension. In this case it is not clear whether 
the normal vectors to the surfaces have long-range correlations but it is tempting to 
conjecture that the vanishing of the string tension is equivalent to the divergence of 
the correlation length of normals. The role that a simple random walk plays in this 
paper is presumably taken over by branched polymers in the case of surfaces (see [7]). 
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Appendix 

Let XI,  X 2 ,  . . . , be random variables in Rd which are to be interpreted as the steps of 
a random walk starting at 0, such that the joint probability distribution of XI,  . . . , X ,  
is given by 

~“(x,,...,x,)=~~(x,)~(xl,x*) . . .  P(X,-l,X,) (All  
and the conditional probability density P ( x ,  y)  of a step y given by the previous step 
x is given by 

where O(x, y)  denotes the angle between x and y, f is a continuous function on [0, TI, 
h is a function on R, such that lyI2 exp[-ph(lyl)] dy <CO, Vp > 0, and N ( P ,  A )  (which 
is independent of x)  is determined by 

P(x, y)  dy = 1. (A3) J 
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Furthermore, P,(x,) is a fixed probability density of the first step. In the following 
we shall choose 

~- 1 

P d x )  = (1 exp[-Philyl)l dY) exP[-Ph(Ixl)l (A41 

since the sequence X I ,  X 2 , .  . . , is then stationary, but it is conceivable that the result 
stated below is independent of the choice of Po. 

We shall prove the following. 
If A is fixed, then the probability distribution of the variables 

X I + .  . .+x, 
2, = 

n 

converges to a normal distribution 

N A ( z )  = ( 2 ~ ) - ~ ” ( d e t  A)-”* exp( - fzAz) 

for some positive d x d matrix A depending on P and A in the sense that 

for all a E Rd, where z < a means that each coordinate in z is less than the corresponding 
coordinate in a, and P ( 2 ,  < a )  denotes the probability that Z,, < a, i.e. 

P,(x,, . . . , x,) dx, . . . dx,. I ( l,’n)(x,+ ... +x. )<a 
P ( 2 ”  < a )  = 

This result is a rather simple consequence of a local central limit theorem for weakly 
dependent random variables as formulated, e.g., in [17], theorem 18.5.1. That theorem 
is only formulated for real random variables, but, by considering the variables 
a X I ,  a X 2 , .  . . , where a E R d  is fixed, it follows easily that it also holds for vector 
valued random variables. 

We show below that 

U:=[ ( ~ , + . . . + x , ) ~ P ~ ( x ,  , . . . ,  x,)dxl  . . .  dx,-c,n+c, 

I 

(AS) 

as n +CO, where cl and c2 are constants. Furthermore, it is clear that 

x ~ P n ( x l , .  . . , x,) dx, . . . dx, <CO. (A9) 

Knowing that (AS) and (A9) are fulfilled it is enough to prove that the sequence 
XI,  X , ,  . . . , is uniformly mixing according to [ 171, i.e. we have to show that 

tends to 0 as m + 00. Here the supremum is taken over all n, k E N and all non-zero 
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measurable sets A c  R", B c Rk, and 

P ( ( X , ,  . . . ,  X , ) E A ) =  P,(x l , .  . . , x,) dx, . . . dx,. ( A l l )  i (X I , . . . ,X~  )E A 

In order to prove that 7 ( m ) + 0  as m + m ,  we shall rewrite (A10) a little. Let 
XI = L2(Rd, d p )  be the Hilbert space of square integrable functions on Rd with respect 
to the measure 

(A12) 

where Po is given by (4). Denote the inner product on Xi by ( I ) and let Q be the 
operator on Xi, whose kernel with respect to d p  is 

d p  ( X )  = Po( X)  dx 

where the normalisation constant M ( A )  is defined by 

1 Q ( x , Y ) ~ Y = ~ .  

Thus 

(Qf)(x) = a x ,  Y l f ( Y )  dp(y )  

for f E XI. 
Considering XI as L* (R+ ,  d v ) O  L 2 ( S d - ' ,  dR) where 

-1  

dv(r )  =( iom rfd-' exp(-ph(r')) dr') rd-' exp(-ph(r)) d r  

and dR is the uniform measure on Sd- '  considered in § 3, we notice that 

Q = e @ K ,  

('414) 

where e is the projection in L*(R+,dv) onto the constant functions and KA is the 
operator on L 2 ( S d - ' ,  dR) defined in § 3. In particular, it follows that the non-zero 
eigenvalues coincide with those of KA and the eigenfunctions are tensor products of 
1 E L2(R+,  dv)  with the corresponding eigenfunctions of KA (spherical functions). 
Thus, when acting on those functions we may identify Q with KA. 

It is then clear that 

pn(xi, .  . ., xn) dx, . . dxn = Q(xi 9 ~ 2 )  . -  Q(xn-i, x,) ~ P ( X I )  . a dp(X"). ('416) 

It is also obvious that Q is a symmetric operator on Xi with positive kernel and with 
norm s 1. Furthermore, the constant functions are eigenfunctions with eigenvalue 1. 
According to the Perron-Frobenius theorem 1 is then a non-degenerate eigenvalue 
and it is easy to see that -1  is not an eigenvalue. Thus, in particular, all eigenfunctions 
except the constants correspond to eigenvalues that are numerically less than 1. 

We note that by rotational invariance (see 9 3) the function 

1 
d ( x ) = - x .  xo 

1x1 
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is an eigenfunction for Q with eigenvalue a < 1 for any X ~ E  R"\{O}. Thus it follows 
from (A16) that for iSjc n we have 

X, * xJPn(xI, . . . , x,) dx, . . . dx, 

=I X I ' X J Q ( X ~ , X I + I )  . . .  Q(xj-~,xj)dCL(X,) * . .dP(Xj)  

I 

where the supremum is over all non-negative functionsf; g E XI whose integrals are c 1. 
Since Q is rotationally invariant its non-zero eigenvalues ho = 1 ,  A I ,  A 2 , .  . . , are 

degenerate with the same eigenfunctions and multiplicity d,,  1 = 0, 1,2,  . . . , as the 
eigenvalues of the Laplace-Beltrami operator on Sd- ' .  We let qo = 1,  q l l  , . . . , q l d l ,  
q,, , . . . , Q2d2, . . . , denote the corresponding normalised eigenfunctions. Then we have 
that (after ordering the non-zero eigenvalues suitably) 

for some constants c, S depending only on the dimension d (see, e.g., [ 141). Moreover, 
the multiplicity d,  satisfies 

l q l i l ~  ~ 1 '  f = l , 2  , . . . ;  i = l ,  ..., d, ( ' 425 )  

d, - ~ ' 1 ' '  as /+CO (A261 
where c', 6' again only depend on d (see [14]) (and S'> 0 if d > 2). 
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Expanding (f1Q"'g) in terms of the eigenfunctions of Q, we now get 

for f, g 2 0  and ( f l  l),  (g /  1 )s  1. 
Since Q is clearly Hilbert-Schmidt we have that 

f /A/12dl <a 
I = l  

and hence, by (A26), 

/ A , I  G constant x ('428) 

From (A24) and (A26)-(A28) it easily follows that 7( m )  + 0 as m + a, as desired, for 
d > 2. For d = 1,2  we have 6 = 6' = 0 and the result also follows. 

For d = 2 a result similar to the one presented in this appendix was proven in [ I S ] .  
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